TARM: A Turbo-Type Algorithm for Affine Rank Minimization
نویسندگان
چکیده
منابع مشابه
TARM: A Turbo-type Algorithm for Affine Rank Minimization
The affine rank minimization (ARM) problem arises in many real-world applications. The goal is to recover a low-rank matrix from a small amount of noisy affine measurements. The original problem is NP-hard, and so directly solving the problem is computationally prohibitive. Approximate low-complexity solutions for ARM have recently attracted much research interest. In this paper, we design an i...
متن کاملDC algorithm for solving the transformed affine matrix rank minimization
Abstract Affine matrix rank minimization problem aims to find a low-rank or approximately low-rank matrix that satisfies a given linear system. It is well known that this problem is combinatorial and NP-hard in general. Therefore, it is important to choose the suitable substitution for this matrix rank minimization problem. In this paper, a continuous promoting low rank non-convex fraction func...
متن کاملCombinatorial Interpretations for Rank-Two Cluster Algebras of Affine Type
Fomin and Zelevinsky [9] show that a certain two-parameter family of rational recurrence relations, here called the (b, c) family, possesses the Laurentness property: for all b, c, each term of the (b, c) sequence can be expressed as a Laurent polynomial in the two initial terms. In the case where the positive integers b, c satisfy bc < 4, the recurrence is related to the root systems of finite...
متن کاملa cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اول(S1/2) regularization methods and fixed point algorithms for affine rank minimization problems
The affine rank minimization problem is to minimize the rank of a matrix under linear constraints. It has many applications in various areas such as statistics, control, system identification and machine learning. Unlike the literatures which use the nuclear norm or the general Schatten q (0 < q < 1) quasi-norm to approximate the rank of a matrix, in this paper we use the Schatten 1/2 quasi-nor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2019
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2019.2944740